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Schur functions

Let D denote the complex unit disk.

The Schur class S1 is the family of holomorphic functions from D
to D−.

A function ϕ ∈ S1 is well-behaved on the interior of the disk D.
What about at the edge?
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Studying Schur functions

Question

How do Schur functions behave on the boundary of the unit circle
T? When do derivatives exist at boundary points τ ∈ T? Is there
any structure to the derivatives at boundary points?

These questions are typical of functional analysis, which studies
classes of functions.



A useful difference quotient

We are interested in the existence of limits and derivatives at
boundary points. So we define a difference quotient that examines
when the function stays under control near the boundary:

Definition

The Julia quotient for a function ϕ ∈ S1 is the ratio

Jϕ(λ) =
1− |ϕ(λ)|

1− |λ|
.



Carapoints I

Definition

Let ϕ ∈ S1. A point τ ∈ T is a carapoint for ϕ if there exists a
sequence {λn} ⊂ D tending to τ such that

Jϕ(λn) =
1− |ϕ(λn)|

1− |λn|

is bounded.



Nontangential sets

When looking at boundary points, we need to avoid introducing
additional boundary behavior into the analysis. Thus, we will use
non-tangential limits:

a set S approaches τ ∈ T nontangentially if S is contained in
a wedge with a point at τ .

A sequence {λn} ⊂ S tends to τ nontangentially if
limn→∞ λn = τ and {λn} is a nontangential set at τ . We

write λ
nt→ τ to indicate a non-tangential limit.
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Julia-Carathéodory Theorem

Theorem (Julia, Carathéodory)

Let ϕ a nonconstant Schur function, i.e. ϕ is holomorphic and
ϕ : D→ D. Let τ be a point in T. The following are equivalent:

A τ is a carapoint for ϕ;

B for every sequence {λn}
nt→ τ , Jϕ(λn) is bounded;

C there exists ϕ(τ) ∈ T such that ϕ(τ) = lim
λ

nt→τ
ϕ(λ), and

furthermore, ϕ is nontangentially differentiable at τ , i.e. there exists

ϕ′(τ) ∈ T such that, as λ
nt→ τ ,

ϕ(λ) = ϕ(τ) + ϕ′(τ)(λ− τ) + o(|λ− τ |).
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Let ϕ a nonconstant Schur function, i.e. ϕ is holomorphic and
ϕ : D→ D. Let τ be a point in T. The following are equivalent:

A τ is a carapoint for ϕ;

B for every sequence {λn}
nt→ τ , Jϕ(λn) is bounded;

C there exists ϕ(τ) ∈ T such that ϕ(τ) = lim
λ

nt→τ
ϕ(λ), and

furthermore, ϕ is nontangentially differentiable at τ , i.e. there exists

ϕ′(τ) ∈ T such that, as λ
nt→ τ ,

ϕ(λ) = ϕ(τ) + ϕ′(τ)(λ− τ) + o(|λ− τ |).



Julia-Carathéodory Theorem
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Julia-Carathéodory Theorem

Theorem (Julia, Carathéodory)

Let ϕ a nonconstant Schur function, i.e. ϕ is holomorphic and
ϕ : D→ D. Let τ be a point in T. The following are equivalent:

A τ is a carapoint for ϕ;

B

C ϕ is nontangentially differentiable at τ , i.e. there exists

ϕ(τ), ϕ′(τ) ∈ T such that, as λ
nt→ τ ,
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A comment and a question

First, a comment on what the J-C Theorem says: as long as ϕ(λ)
doesn’t run away too quickly towards the boundary as the input λ
approaches τ , ϕ is nice near τ in the sense that it has a linear
approximation on nontangential sets.

Question

Is this theorem true in two variables? What would it have to say?
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condition near a boundary point τ , then ϕ is nicely behaved on
nontangential sets near τ .
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Two variables

Let D2 = D×D be the complex unit bidisk. We write λ = (λ1, λ2)
for the components, with

∣∣λi ∣∣ < 1.

The distinguished boundary of D2 is T2 = T× T, the unit 2-torus.
We write τ = (τ1, τ2) for the components with

∣∣τ i ∣∣ = 1
(T2 is where the interesting function theory occurs.)

The Schur class in two variables S2 is the family of holomorphic
functions from D2 to D−.
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Julia quotient

Definition

The Julia quotient for a function ϕ ∈ S2 is the ratio

Jϕ(λ) =
1− |ϕ(λ)|

1−max{|λ1| , |λ2|}
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Carapoints II

Definition

Let ϕ ∈ S2. A point τ ∈ T2 is a carapoint for ϕ if there exists a
sequence {λn} = {(λ1n, λ2n)} ⊂ D2 tending to τ such that

Jϕ(λn) =
1− |ϕ(λ)|
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Conjecture

If ϕ ∈ S2 has a carapoint at τ , then ϕ is nicely behaved on
nontangential sets near τ .



Conjecture

If ϕ ∈ S2 has a carapoint at τ , then ϕ has a linear approximation
on nontangential sets near τ .



A speculation on the bidisk

Speculation

Let ϕ ∈ S2. If τ ∈ T2 is a carapoint for ϕ, then ϕ is
nontangentially differentiable at τ , i.e. there exist a nontangential
limit ϕ(τ) ∈ T and a gradient ∇ϕ(τ) such that

ϕ(λ) = ϕ(τ) +∇ϕ(τ) · (λ− τ) + o(‖λ− τ‖)

as λ
nt→ τ .



Be wary

Of course, we should be suspicious. Functions of two complex
variables are much harder to work with. Why?

In one variable, polynomials factor into linear terms.
(Fundamental theorem of algebra)

In one variable, the zeros of polynomials are isolated.

On the other hand,

In two variables, polynomials rarely factor into linear terms.
(even worse in more than two variables)

In two variables, the zeroes of polynomials are never isolated.
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A simple rational function

Example

Let ϕ be the rational inner function

ϕ(λ) =
λ1 + λ2 − 2λ1λ2

2− λ1 − λ2
.

ϕ is inner: D2 → D, T2 → T.
ϕ has a singularity at χ = (1, 1) that looks like 0

0 .
ϕ has a carapoint at χ.
ϕ has a nontangential limit ϕ(χ) = 1.
BUT ϕ does NOT have a linear approximation near χ.
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Directional derivatives

ϕ(λ) =
λ1 + λ2 − 2λ1λ2

2− λ1 − λ2

is not nontangentially differentiable at χ = (1, 1),

however, it is true that for any direction −δ pointing into the
bidisk at χ, ϕ is directionally differentiable.

That is, the directional derivative of ϕ at χ in the direction −δ,

D−δϕ(χ) = lim
t→0

ϕ(χ+ tδ)− ϕ(χ)

t
,

exists.

D−δϕ(χ) = − 2δ1δ2
δ1 + δ2

.
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Need a new tool

Question

Does this always happen? Does ϕ have a carapoint at τ if and
only if ϕ directionally differentiable at τ? Does a function ever
have a linear approximation at a carapoint?

To answer these questions, we use a tool that allows us to avoid
dealing with the function and instead analyze the geometry of
vectors.



Hilbert spaces

A Hilbert space is an infinite dimensional analogue of a vector
space. Hilbert spaces come equipped with inner products,
orthogonality, and linear operators, the familiar tools of vector
spaces.

In the early 1990s, J. Agler, following work of D. Sarason, invented
the notion of a Hilbert space model, a tool for transforming
questions about an analytic function into questions about inner
products of vectors.



Hilbert space models

Theorem (Agler)

Every function ϕ in S2 has a Hilbert space model, a pair (M, u).

M is an orthogonally decomposed separable Hilbert space
M =M1 ⊕M2

u is an analytic map u : D2 →M
such that the model equation

1− ϕ(µ)ϕ(λ) =

〈(
1− µ∗λ

)
u(λ), u(µ)

〉
M

holds for all λ, µ ∈ D2 where λ is an operator from D2 into L(M)
by

λ = λ1P + λ2(1− P),

where P is a projection operator onto the space M1.
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J-C Theorem on the bidisk

Hilbert space models can be used to give a two-variable J-C
Theorem:

Theorem (Agler, McCarthy, Young, 2012)

Let ϕ be in S2, τ ∈ T2.

1 TFAE:

a τ is a carapoint for ϕ;

b lim
λ

nt→τ
ϕ(λ) = ϕ(τ) ∈ T and ϕ is directionally differentiable for

all directions −δ pointing into the bidisk at τ ;
c for any model (M, u) of ϕ, the map u(λ) is bounded on all

sequences λ
nt→ τ .

2 ϕ is nontangentially differentiable at τ if and only if for every
model (M, u) for ϕ, the map u(λ) extends continuously to τ
on nontangential sets.
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What does it mean?

The two variable Julia-Carathéodory Theorem shows that a
function can be linearly approximated at a carapoint precisely when
Hilbert space models are continuous at that point (in the sense
that lim

λ
nt→τ

u(λ) = u(τ)).

How do boundary singularities points play a role in this?



Singularities and differentiability

Example

ϕ(λ) =
λ1 + λ2 − 2λ1λ2

2− λ1 − λ2

has a singularity at χ = (1, 1) and is NOT nontangentially
differentiable.

We might conjecture that this is always the case.

BUT

Example

f (λ) =
−4λ1(λ2)2 + (λ2)2 + 3λ1λ2 − λ1 + λ2

(λ2)2 − λ1λ2 − λ1 − 3λ2 + 4

has a singularity at χ = (1, 1) and IS nontangentially differentiable.
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A more general model

Issue: A standard Hilbert space model is not suited to the
investigation of behavior at singularities.

Example

ϕ(λ) =
λ1 + λ2 − 2λ1λ2

2− λ1 − λ2

has a singularity at χ. As a Schur function, ϕ has a model.

The model operator λ = λ1P + λ2(1− P) is linear and does not
share the singularity.

As a consequence, the Hilbert space M encodes the noise from the
singular behavior instead of the operator λ, and the resulting space
is too large.
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Modeling singular carapoints

Let Y be an operator on a Hilbert space M that is a positive
contraction. (By way of analogy, think of Y as a square matrix
with eigenvalues in the interval [0, 1]).

Consider the function IY (λ) : C2 → L(M) defined by

IY (λ) =
λ1Y + λ2(1− Y )− λ1λ2

1− λ1(1− Y )− λ2Y
.

IY is an operator-valued contractive map (like a Schur
function).

IY has a singular carapoint at χ.

IY (χ) = IM.
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Definition

Let ϕ be in S2. The triple (M, u, IY ) is a generalized model of ϕ
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such that the equation
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)
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Generalized models are continuous at carapoints

Theorem (T.D., ’16 and Agler, T.D., Young, ’12)

Let ϕ ∈ S2. χ = (1, 1) is a carapoint for ϕ ∈ S2 if and only if
there exists a generalized model (M, u, I ) of ϕ such that u extends
continuously to χ on nontangential sets.

That is, we can always find a model function u(λ) in a generalized
model that extends continuously to the boundary. In other words,
it makes sense to write

lim
λ
nt→χ

u(λ) = u(χ).

We can use u to probe the behavior of ϕ at a singular carapoint.



Generalized models are continuous at carapoints

Theorem (T.D., ’16 and Agler, T.D., Young, ’12)

Let ϕ ∈ S2. χ = (1, 1) is a carapoint for ϕ ∈ S2 if and only if
there exists a generalized model (M, u, I ) of ϕ such that u extends
continuously to χ on nontangential sets.

That is, we can always find a model function u(λ) in a generalized
model that extends continuously to the boundary. In other words,
it makes sense to write

lim
λ
nt→χ

u(λ) = u(χ).

We can use u to probe the behavior of ϕ at a singular carapoint.



A model argument

We calculate the directional derivative of ϕ at a carapoint χ in the
direction −δ: see board.



Slope functions

A Pick function is an analytic function from the complex upper
halfplane into itself.

Theorem (Agler, McCarthy, Young and Agler, T.D., Young)

Suppose that ϕ ∈ S2 has a carapoint at χ. Let −δ be any
direction pointing into the bidisk at χ. Then there exists a
function h so that h and −zh are in the Pick class so that

D−δϕ(χ) = −ϕ(χ)δ2h(
δ2
δ1

)



Singular points and differentiability

We have yet to answer our last question: how can we tell the
difference between singular carapoints that give rise to linear
approximations and those that give rise merely to directional
derivatives?

Theorem (T.D., 16)

Let ϕ ∈ S2 have a carapoint at χ. u(χ) ⊥ kerY (1− Y ) if and
only if ϕ is nontangentially differentiable at χ.

Theme: model geometry ⇔ function theory



Fin

Thank you.
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